
时光
- 联系方式:guang.shi@ynu.edu.cn
- 地址:信息学院1218

云南大学信息学院讲师。先后毕业于昆明医科大学,山东大学,日本奈良先端科学技术大学院大学。具有多年临床医师执业经验及计算机医工交叉学科科研经历。从事医疗大数据分析、智能医疗及生物医学信号处理等方向教学与科研。
[1] Guang SHI, Hoko KYO, Toshihiro KAWASAKI, Shigehiko KANAYA, Mariko SATO, Saki TOKUDA-KAKUTANI, Hiroshi WATANABE, Norihito MURAYAMA, Minako OHASHI, Md Altaf-Ul-Amin, Naoaki ONO, Hiroki TANAKA, Satoshi NAKAMURA, Kazuo UEBABA, Nobutaka SUZUKI, Ming HUANG, “Evaluation and Interpretation of 9 Body Constitution Scores of CCMQ-J by Seven Independent Questionnaires”, Japanese J. of Complementary and Alternative Medicine, 16, pp79-93 , 2019
[2] Guang Shi, Zheng Chen, Shigehiko Kanaya, Md Altaf-UI-Amin, Naoaki Ono and Ming Huang, "Prediction of Body Constitutions through Life-Style for Health Guidance," IEEE Global Conference on Life Sciences and Technologies (LifeTech), 2021, pp. 106-107.
[3] Guang Shi, Zheng Chen, Renyuan Zhang, “AI-assistant prediction of body constitution: from inquiry to recovery”, International Symposium on Automation, Information and Computing (ISAIC), Dec. 9th-11th, 2021
[4] Guang Shi, Zheng Chen, Renyuan Zhang, Ming Huang, Naoaki Ono, Md Altaf-UI-Amin, and Shigehiko Kanaya, "Algorithm Cocktail Approach for Predicting Body Constitution and Bias Recovery," IEEE Global Conference on Life Sciences and Technologies (LifeTech), 2022.
[5] G. Shi, Z. Chen and R. Zhang, "A Transformer-Based Spatial-Temporal Sleep Staging Model Through Raw EEG," IEEE International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), 2021, pp. 110-115.
[6] Guang Shi, Zheng Chen and Renyuan Zhang, “Efficient Support Vector Machine towards Medical Data Processing”, Lecture Notes Springer Lecture Notes in Networks and Systems (Proc.s Int.l Cong. Info. and Comm. Tech.), ISSN: 2367-3370, 2022 to appear.
[7] Lingwei Zhu, Koki Odani, Ziwei Yang, Guang Shi, Yirong Kan, Zheng Chen, and Renyuan Zhang, “Adaptive Spike-Like Representation of EEG Signals for Sleep Stages Scoring”, IEEE Engineering in Medicine & Biology Society (EMBC), 2022.
(1)计算机辅助智能临床决策支持系统即CDSS(Clinical Decision Support System):通过建立疾病数据库,采取多层次人工智能机器学习策略对某类具体临床主体实现智能决策辅助的大模型系统。
(2)大健康数据分析:如中医体质学及其健康改善干预。在本团队原创的病征数据库和生活习惯数据库的基础上追加建设区域性特征数据库,世界首创地探明并科学量化以上数据与中医体质的关联性及其关键因子;量化并临床实践以此为依据的亚健康干预。
(3)口腔临床数据库建设:针对数据库资源高度稀缺且建设困难的颞下颌关节紊乱病(Temporomandibular Disorders: TMD),开创一组具有(云南省)地域性特征的TMD专病数据库并在项目开展后数十年间稳定积累数据资源。此数据库中涉及的静态诊断数据资源与国内外已有资源类似;动态治验数据资源为世界首创。针对TMD相关疾病的数据库提出深度分析方案,预期对例如颞下颌关节疾病的一类高度复杂疾病数据库设计高精度计算机辅助诊断模型,诊断正确率达95%以上;对此类在临床医学领域关键致病因尚无明确共识的疾病从统计学的角度探寻关键指针,为医科学研究提供统计学依据。
(4)低维生物医学信号智能分析:例如脑电信号ElectroEncephaloGraphy (EEG)与睡眠质量关联性分析。对脑电信号的原始数据处理提出了量化压缩技术,从而在后端分析中得以使用一定复杂度的深度学习机制,达到一定程度的精度提升。在睡眠等级分类的临床应用中,取得了和目前世界最高水平等同的分类精度并大幅压缩了算法开销。关注且不限于脑电信号(EEG),肌电信号(EMG),MRI、CBCT等医学图像,声学信号等。